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Abstract

We investigate analytically the first and the second law characteristics of fully developed forced convection inside a porous-saturated
duct of rectangular cross-section. The Darcy–Brinkman flow model is employed. Three different types of thermal boundary conditions
are examined. Expressions for the Nusselt number, the Bejan number, and the dimensionless entropy generation rate are presented in
terms of the system parameters. The conclusions of this analytical study will make it possible to compare, evaluate, and optimize alter-
native rectangular duct design options in terms of heat transfer, pressure drop, and entropy generation.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

There has recently been renewed interest in the problem
of forced convection in porous media. An increasingly
important application is in liquid cooled electronics with
coolants such as water or poly-a-olefin flowing through
aluminum porous metal matrix assemblies. Narasimhan
and Lage [1] offer an analysis of forced convection through
an aluminum based porous matrix heated from top and
bottom to model the heat generated by the electronic cir-
cuits in radar equipment. Commensurate with the generic
importance of the area, a substantial amount of literature
on this topic is already available as reported in Nield and
Bejan [2] and Cheng [3]. Circular tubes or semi-infinite par-
allel plate channels are the most widely used geometries in
electronics cooling equipment having either clear fluid or
porous matrices such as water distribution systems, heat
exchangers, liquid cooled cold plates, and similar applica-
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tions. Fluid flow and heat transfer characteristics of such
problems have been analyzed in detail for various bound-
ary conditions.

Considering circular tubes or parallel plate geometries,
the simplicity of the geometry allows analytical solution
of closed form. Thus the question naturally arises as to
whether analytical solutions for more complicated cross-
sections are possible. The method of weighted residuals
was exploited by Haji-Sheikh and Vafai [4] in their study
of thermally developing convection in ducts of various
shapes. In a subsequent study, Haji-Sheikh [5] has applied
Fourier series method to investigate fully developed forced
convection in a duct of rectangular cross-section. Haji-
Sheikh et al. [6–10] have investigated heat transfer through
porous ducts of arbitrary cross-sections. Their focus was to
find heat transfer characteristics of the thermal entrance
region. Applying Fourier series method, Hooman and
Merrikh [11] have analytically investigated heat transfer
and fluid flow in a rectangular duct occupied by a hyper-
porous medium. In ducts of arbitrary cross-section,
Hooman [12,13] and Hooman and Gurgenci [14] have
reported closed form solutions for the fully developed
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Nomenclature

a channel width to height ratio
A parameter defined by Eq. (2b)
A1, A2 constants
B* parameter defined by Eq. (27)
Be Bejan number, Eq. (6d)
Br Darcy–Brinkman number lU2H

q00K
Br* modified Brinkman number lU 2

kT wq�2

cP specific heat at constant pressure (J/kg K)
Da Darcy number K/H2

DH hydraulic diameter 4Ha/(a + 1) (m)
Dn coefficient defined by Eq. (2c)
FFI fluid friction irreversibility per unit volume

(W/m3 K)
Fn coefficients defined by Eq. (25)
G negative of the applied pressure gradient (Pa/m)
H half channel width (m)
HTI heat transfer irreversibility per unit volume

(W/m3 K)
k porous medium thermal conductivity (W/m2 K)
K permeability (m2)
Kn coefficients defined by Eq. (19)

m parameter ðs2 þ k2
nÞ

1=2

M viscosity ratio
Ns dimensionless entropy generation Eq. (9)
Ns* cross-sectional average of Ns

Nu Nusselt number defined by Eqs. (5a) and (5b)
Nui Nusselt number for the boundary condition case

i (i = 1,2,3)
P duct perimeter P = 4H(1 + a) (m)

Ph heated perimeter of the duct (m)
Pe the Péclet number Pe = qcpUDH/k
q0 wall heat transfer rate per unit length of the duct

(W/m)
q00 heat transfer rate per unit heat transfer area of

the duct Eq. (5b) (W/m2)
q* dimensionless heat flux, Eq. (10)
S porous media shape parameter s = (MDa)�1/2

_Sgen entropy generation rate per unit volume
(W/m3 K)

T * local absolute temperature (K)
Tm bulk temperature (K)
Tw wall temperature (K)
u* x-velocity (m/s)
û dimensionless velocity equation (2a)
U average velocity (m/s)
x* longitudinal coordinate (m)
x dimensionless coordinate, (x*/H)/Pe
y*, z* coordinates (m)
y, z (y*,z*)/H

Greek symbols

h dimensionless temperature
hb dimensionless bulk temperature
kn eigenvalues
l fluid viscosity (N s/m2)
~l effective viscosity (N s/m2)
q fluid density (kg/m3)
/ dimensionless viscous dissipation function
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temperature distribution and the Nusselt number as well
as local entropy generation rate by applying the Darcy
momentum equation.

The groundbreaking work by Bejan [15] introduced the
concept of entropy generation analysis due to fluid flow
and heat transfer as a powerful tool to optimize variety
of configurations when analyzing engineering problems.
Since entropy generation destroys the work availability of
a system, it makes good engineering sense to focus on irre-
versibility of heat transfer and fluid flow processes to
understand the associated entropy generation mechanisms.
The literature on the topic is rich for clear fluids through
unobstructed ducts. A recent survey of literature on the
topic can be found in [16,17].

Modeling entropy generation in porous media is com-
paratively more tedious than clear fluid case due to the
increased number of variables present in governing equa-
tions. For the Darcy flow model, viscous dissipation can
be modeled via velocity square term only (see for example
Baytas [18,19] or Hooman [12,13]). But when the boundary
and inertia effects are to be included, there are three alter-
natives for viscous dissipation term. Nield [20] argued that
the viscous dissipation function should remain equal to the
power of the drag force when the Brinkman equation is
considered. On the other hand, Al-Hadrami et al. [21] have
proposed a clear flow compatible model. Nield et al. [22]
have combined the three alternatives to a single equation
treating both the isothermal and isoflux boundary condi-
tions. A similar attempt was made by Hooman et al.
[23,24] for a developing flow. Nield [25] has commented
on the alternative models applied so far, emphasizing that
one should not use just the term involving velocity deriva-
tives. In the light of Nield [25], Hooman and Ejlali [26] and
Hooman et al. [27] have questioned some of the articles
that neglected the Darcy dissipation term. Hence, further
work on modeling entropy generation in a porous medium
is called for.

Energy–entropy analysis for ducts of arbitrary cross-
section is already studied in [12–14] by applying the Darcy
flow model. However, when non-Darcy effects are consid-
ered, the velocity distribution has no longer a uniform
(slug) shape and the situation gets more complicated.
Applying the velocity distribution reported in [11], this
paper offers an analytical solution of heat transfer and



Fig. 1. Definition sketch.

Table 1
Case definition in terms of boundary conditions

Case Entity name Boundary condition Ph/P

1 AB, BC, CD, DA Heated 1

2 CD Insulated
1þ 2a
2þ 2a

AB,BC, DA Heated
3 BC, AD Heated

a
1þ a

AB, CD Insulated
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entropy generation in a duct of rectangular cross-section
saturated by a porous medium. In the terminology of Shah
and London [28], three cases of H1 boundary condition are
applied, to be referred to as cases 1, 2, and 3 as described in
Fig. 1 and Table 1. For H1 boundary condition one
assumes a constant longitudinal heat flux where in each
cross-section the wall temperature is constant independent
of other two dimensions. This boundary condition may
represent, for example, electric resistance heating of highly
conductive walls. In case 1, the four walls are uniformly
heated. For this case we have adopted the results of [11]
for both velocity and temperature profiles to investigate
the second law aspects of the problem. In case 2, one of
the walls is assumed to be adiabatic. In case 3, the two side-
walls are assumed to be adiabatic. To the authors’ knowl-
edge, no analytical solution is available for cases 2 and 3 of
this problem.
2. Analysis

2.1. Hydrodynamic aspects of the problem

The Darcy–Brinkman extended momentum equation
for the case of unidirectional (fully developed) flow in the
x*-direction in a rectangular duct occupied by a porous
medium with velocity u*(y*,z*) can be written based on [2]

~l
o2u�

oy�2
þ o2u�

oz�2

� �
� l

K
u� þ G ¼ 0: ð1Þ

In the above equation, l is the fluid viscosity, ~l is the effec-
tive viscosity (based on adoption of the Brinkman model),
K is the permeability, and G is the negative of the applied
pressure gradient. The analytical solution to this equation
subject to impermeable wall boundary conditions is [11]

û ¼ 1

A

X1
n¼1

Dn 1� cosh mz
cosh ma

� �
cos kny; ð2aÞ

A ¼ 2

p

X1
n¼1

1

ð2n� 1Þ2m2
1� tanh ma

ma

� �
; ð2bÞ

Dn ¼
ð�1Þn�1

ð2n� 1Þm2
; ð2cÞ

where ðx; y; zÞ ¼ ðx�=Pe; y�; z�Þ=H are the dimensionless
coordinates, M ¼ ~l=l is the viscosity ratio, Da = K/H2 is
the Darcy number, kn = (2n � 1)p/2 are the eigenvalues,
s = (MDa)�1/2 is the porous media shape parameter,
Pe = qcpUDH/k is the Péclet number, and m ¼ ðs2 þ k2

nÞ
1=2.

Here û is the dimensionless velocity defined as

û ¼ u�

U
; ð3Þ

where U is the average velocity defined as U = hu*i (the
angle brackets denote an average taken over the duct
cross-section).

2.2. Energy–entropy analysis

2.2.1. First law aspects of the problem

Steady-state condition, local thermal equilibrium, homo-
geneity, and no thermal dispersion are assumed (one may
consult [2] to find the condition based on which one can
neglect the aforementioned effects in the thermal energy
equation). In this case the thermal energy equation becomes

u�
oT �

ox�
¼ k

qcP

o
2T �

oy�2
þ o

2T �

oz�2

� �
: ð4aÞ

Here T* is the temperature, q is the density of the fluid, cP is
the specific heat at constant pressure of the fluid, and k is
the effective thermal conductivity of the medium.

Thermally fully developed condition with isoflux walls
requires oT �

ox� ¼
dT m

dx� , as noted by Shah and London [28]. On
the other hand, the first law of thermodynamics, when
applied to a thin cross-sectional slice of the duct (size
Pdx*), leads to the requirement that

qcpAU
oT �

ox�
dx� ¼ q00 dx�P h: ð4bÞ

Eq. (4b) shows that heat transfer from the walls to the
stream reflects the enthalpy rise experienced by the stream
assuming that the fluid is an ideal gas or an incompressible
liquid with negligible pressure changes. Hence, the above
equation can be rearranged as

oT �

ox�
¼ 4q00

qcpUDH

P h

P
: ð4cÞ

In particular, in terms of a and H, Eq. (4c) takes the follow-
ing form

oT �

ox�
¼ q00ð1þ aÞ

qcpUHa
P h

P
: ð4dÞ
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This is a general conclusion and can be applied for any of
the three boundary conditions considered here (see the last
column of Table 1). The Nusselt number is defined as

Nu ¼ q00DH

kðT �w � T mÞ
; ð5aÞ

where q00 is the heat transfer rate per unit area of the duct
similar to what defined by Shah and London [28] based on
the heat flux defined as follows

q00 ¼ q0

P h

: ð5bÞ

Here, q0 is the wall heat transfer rate per unit length of the
duct and Ph is the heated perimeter of the duct. Moreover,
the bulk temperature is defined as T m ¼ hûT �i and the
hydraulic diameter, DH, is given by DH = 4Ha/(a + 1).

2.2.2. Second law aspects of the problem

Entropy generation through heat and fluid flow in a por-
ous medium is associated with thermodynamic irreversibil-
ity. Different sources are responsible for generation of
entropy, including heat transfer across a finite temperature
gradient, mixing, and viscous dissipation. Following Bejan
[15], the entropy generation rate per unit volume (known as
‘‘entropy generation hereafter”) is related to heat transfer

irreversibility due to transfer in the direction of finite
temperature gradients, HTI, and fluid friction irreversibility

due to frictional heating, FFI, as

_Sgen ¼ HTIþ FFI: ð6aÞ

According to [6,7,15,21] the above terms are defined as

HTI ¼ k
oT �

ox�

� �2 þ oT �

oy�

� �2

þ oT �

oz�

� �2

T �2
; ð6bÞ

FFI ¼
lu�2

K þ ~l ou�

oy�

� �2

þ ou�

oz�

� �2
� �

T �
: ð6cÞ

One notes that in the above equations T* is measured in Kel-
vin. It is worth noting that the Bejan number, Be, is defined
as the ratio of HTI to the total entropy generation rate as

Be ¼ HTI

FFIþHTI
: ð6dÞ

For the case of negligible FFI, i.e. FFI =0, the Bejan num-
ber tends to become unity and one verifies that the only
means of entropy generation is HTI. According to Bejan
[15], for some special cases, one must include FFI in entro-
py generation analysis even if one has already neglected the
viscous dissipation term in the thermal energy equation
which is exactly the present case.

3. Solution procedure

3.1. Case 1

For this case we recover the analytical solution reported
in [11] that proposes the following form for the longitudi-
nal temperature gradient:
oT �

ox�
¼ q00

qcPHU
aþ 1

a

� �
: ð7Þ

The dimensionless temperature profile, h ¼ k T w�T �

q00DH
, may be

rearranged as

h¼ aþ1

2as

� �2 1

A

X1
n¼1

Dn

k2
n

coskny s2�m2 coshknz
coshkna

þk2
n

coshmz
coshma

� �
:

ð8Þ

The dimensionless form of entropy generation, Ns, is
defined to be

Ns ¼
_Sgen

k
H
q�

� �2

; ð9Þ

where the dimensionless heat flux, q*, is

q� ¼ q00DH

kT w

: ð10Þ

We fixed the q* value to q* = 0.1 in this work so that one
can neglect possible changes in the fluid and solid matrix
physical property as a result of high temperature differ-
ences in a cross-section. In particular from Eqs. (6)–(10)
one finds Ns and Be as

Ns ¼
aþ1

a

� �2 þ oh
oy

� �2

þ oh
oz

� �2

ð1� hq�Þ2
þ Br�s2 /

ð1� hq�Þ ; ð11aÞ

Be ¼
aþ1

a

� �2 þ oh
oy

� �2

þ oh
oz

� �2

aþ1
a

� �2 þ oh
oy

� �2

þ oh
oz

� �2 þ Br�s2ð1� hq�Þ/
; ð11bÞ

where the modified Brinkman number, Br*, is defined as

Br� ¼ lU 2

kT wq�2
: ð11cÞ

Moreover, the dimensionless viscous dissipation function,
/, is defined as

/ ¼ û2 þ s�2 oû
oy

� �2

þ oû
oz

� �2
 !

: ð12Þ

It is worth noting that / remains unchanged while FFI
changes from one case to another. All of the terms in
Eqs. (11) and (12) are known and one may find both Be

and Ns by Eqs. (11a) and (11b). The average values may
be found as Ns* = hNsi and Be* = hBei. Numerical integra-
tion is applied to find Ns* and Be* values since one notes
that both Ns and Be are nonlinear functions of y and z
and analytical solutions to the above equations are not
possible.

3.2. Case 2

All three walls are kept at a uniform temperature (Tw)
while the fourth one (the right wall shown in Fig. 1) is adi-
abatic. For this case the first law implies that
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oT �

ox�
¼ q00

qcPHU
2aþ 1

2a

� �
: ð13Þ

Applying the dimensionless temperature profile, the ther-
mal energy equation becomes

o2h
oy2
þ o2h

oz2
þ ûðaþ 1Þð2aþ 1Þ

8a2
¼ 0: ð14Þ

The thermal boundary conditions are oh
oz ¼ 0 at the adia-

batic wall and h = 0 at other walls. The solution to Eq.
(14) subject to the aforementioned boundary conditions
may be written as

h ¼
X
n¼1

fnðzÞ cos kny: ð15Þ

After some algebraic manipulation one finds that

h ¼ ðaþ 1Þð2aþ 1Þ
16s2a2

p
A

X1
n¼1

ð�1Þn�1

k2
n

 
A1 cosh knzþ A2 sinh knz

þ
s2 þ k2

n
cosh mz
cosh ma

� �
knm2

!
cos kny ð16aÞ

with

A1 ¼
k2

n tanh 2kna tanh kna
2kn
� tanh ma

2m

� �
� 1

k2
n cosh kna

; ð16bÞ

A2 ¼
cosh kna tanh kna

kn
� tanh ma

m

� �
cosh 2kna

: ð16cÞ

The compatibility condition (an identity resulting from the
definitions)

Nu ¼ 1

hûhi ; ð17Þ

yields an expression for the Nusselt number, namely

Nu ¼ ð2apAsÞ2

ð2aþ 1Þðaþ 1Þ

,X1
n¼1

Kn

ð2n� 1Þ4m4
; ð18Þ

where

Kn ¼
k2

n

2
tanh2ma� k2

n

2
� s2

� �
1� tanhma

ma

� �
þ m4

2s2

tanhkna
kn

�

� tanhma
m

�
kn tanh2kna

tanhkna
kn

� tanhma
m

� �
� 2

� �
:

ð19Þ

The second law proposes the following form for Ns and Be:

Ns ¼
2aþ1

2a

� �2 þ oh
oy

� �2

þ oh
oz

� �2

ð1� hq�Þ2
þ Br�s2 /

ð1� hq�Þ ; ð20aÞ

Be ¼
2aþ1

2a

� �2 þ oh
oy

� �2

þ oh
oz

� �2

2aþ1
2a

� �2 þ oh
oy

� �2

þ oh
oz

� �2 þ Br�s2ð1� hq�Þ/
: ð20bÞ
3.3. Case 3

For this case it is assumed that the upper and lower
walls are kept at a uniform temperature (Tw) while the
sidewalls are adiabatic. The first law of thermodynamics
implies

oT �

ox�
¼ q00

qcPHU
: ð21Þ

In dimensionless form, the thermal energy equation reads

o
2h

oy2
þ o

2h
oz2
þ ûðaþ 1Þ

4a
¼ 0: ð22Þ

The appropriate boundary conditions are h = 0 at the
upper and lower walls and oh

oz ¼ 0 at the adiabatic walls
(sidewalls). One finds the dimensionless temperature distri-
bution as

h¼ aþ1

4aA

X1
n¼1

Dn

k2
n

1�knm tanhma
s2

coshknz
sinhkna

þk2
n

s2

coshmz
coshma

� �
coskny;

ð23Þ

and consequently one finds the Nusselt number as

Nu ¼ 2ðpAsÞ2a
ðaþ 1Þ

,X1
n¼1

F n

ð2n� 1Þ4m4
; ð24Þ

where

F n ¼
k2

n

2
� s2

� �
1� tanh ma

ma

� �
� m4

s2

tanh ma
m

� 1� kn

m
tanh ma
tanh kna

� �
þ k2

n

2
tanh2ma: ð25Þ

Similar to the previous section, Ns and Be are found to be

Ns ¼
1þ oh

oy

� �2

þ oh
oz

� �2

ð1� hq�Þ2
þ Br�s2 /

ð1� hq�Þ ; ð26aÞ

Be ¼
1þ oh

oy

� �2

þ oh
oz

� �2

1þ oh
oy

� �2

þ oh
oz

� �2 þ Br�s2ð1� hq�Þ/
: ð26bÞ
4. Results and discussion

Closed form solutions have been obtained for the varia-
tion of velocity, temperature, the Bejan number, and the
dimensionless entropy generation function throughout the
solution domain. In the interest of brevity, we will limit
our results to the effect of the duct aspect ratio and shape
parameter on Nu, Be, and Ns.

Fig. 2 shows the Nusselt number for all the three cases
studied versus the shape parameter. As a common trend,
Nu seems to increase with the aspect ratio, a. One should,
however, note that this trend is primarily due to the choice
of the length scale in the definition of Nu. If the Nusselt
number were based on 4H, for example, instead of the



Fig. 2. The Nusselt number versus the porous media shape parameter
for the three cases with some aspect ratios.
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hydraulic diameter, DH, the dependence on the aspect ratio
would almost completely disappear. This shows the impor-
tance of recognizing the way the dimensionless parameters
are constructed when interpreting the physical implications
of graphs such as Fig. 2. The values at the low end of the s

axis are expected to converge to the clear fluid conditions
as porous medium permeability increases. In fact, they do
so below s = 1 and show evidence of very good agreement
against values reported in the literature for heat transfer in
rectangular ducts with clear fluids, e.g. [28]. It is interesting
to note that Shah and London [28] also based the Nusselt
number on the hydraulic diameter, which emphasizes the
dependence on the aspect ratio as mentioned above.
The values at the high end of the s axis should approach
the Darcy flow conditions. In fact, the Nusselt number
seems to attain its Darcy flow value at around s = 50–70
regardless of neither the aspect ratio nor the boundary con-
ditions. For s values approximately between 1 and 70, Nu

has a power relation with s, increasing from its clear fluid
value to almost its slug flow limit over this range. When
examining the differences due to the heat transfer boundary
conditions, one should remember that the heat flux in the
Nusselt number definition (Eqs. (5a) and (5b)) is based
on the heated perimeter rather than the wetted perimeter.
This follows the general practice to facilitate comparison
against past results reported in the literature [28–30]. It
appears that the case 1 boundary condition almost always
results in the lowest Nusselt number at the clear fluid end
(as s approaches 0) of all three boundary condition cases.
The only exception is for the square duct (a = 1), where
Nu2 values are consistently below the other two cases over
entire s domain, but even there the clear fluid values for
cases 1 and 2 are very close to each other. In general, for
small s values Nu3 is higher than Nu1 while for higher s val-
ues it is the other way around. For clear fluid or hyperpor-
ous flow through square ducts, case 3 results in a higher Nu

value with the same pressure drop. As s increases for a
square duct, e.g. keeping a fixed duct size when the perme-
ability is lowered, case 1 provides the highest Nusselt num-
ber. In addition to having a higher Nusselt number over the
heat transfer area, it should be remembered that the actual
heat transfer area is also higher for the case 1 boundary
condition. Therefore, flow through a square duct with
low permeability achieves the best heat removal rates under
case 1 boundary conditions. This fact may be of vital
importance when it comes to applications such as low per-
meability foam for cooling electronic equipment similar to
the Al-foam examined by Lage et al. [31]. However, with
rectangular cross-sections, the situation starts changing in
such a way that Nu1 goes to minimum regardless of the s

value. Considering rectangular porous passages with small
s values, Nu3 is always higher than the other two. On the
other hand, for higher s values approaching slug flow con-
ditions, Nu2 exceeds Nu3 (and Nu1 non-square ducts). This
does not change the fact that if one needs to achieve max-
imum cooling rate, all four surfaces must be used. How-
ever, our results show that there is some compensation
offered by higher Nu values over smaller heat transfer areas
if one has to limit the heat exchange area for other reasons.

Another point worth mentioning is that for very large
aspect ratios, all of the three cases resemble parallel plate
channel case where the Nu plots become almost indistin-
guishable. This is expected since for very large values of
a, heat transfer rate from the two short sidewalls is negligi-
ble compared to the total heat transfer rate.

To explain the Nu behavior, we classify the results in
terms of high (s� 10) and low porous media shape param-
eters (s� 10). For small s values, case 3 achieves the high-
est Nu values. This case has two adiabatic walls near which
the temperature shows no change in the direction normal
to the walls. This means that in this region the heat transfer
is almost one dimensional (along the side walls) and the
temperature is not equal to Tw. This means that the mini-
mum temperature, which is expected to happen in the duct
center for being in its farthest distance from the walls, is
higher than the minimum value for the other two cases
when the heat input to the duct as our thermodynamic sys-
tem (which will change the enthalpy of the system) is con-
stant for the three cases. Considering the fact that in the
duct center the velocity experiences its maximum, one
expects that the bulk-wall temperature difference (which
is inversely proportional to Nu) be minimum compared
to the other counterparts leading to an increase in Nu.
However, when s increases to higher values, say s > 10,
the velocity changes are restricted to thin near wall regions
[11] and out of this region the velocity distribution is uni-
form. For large s values there are two opposing effects: near
the adiabatic walls the heat transfer is one dimensional and
this enhances the minimum temperature at the duct center
compared to a case with no adiabatic wall, i.e. case 1. On
the other hand, high near wall temperatures when one



a

N
s*

1  3             4    5       6     7    8
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5
6

Case 1
2
3

a

N
s*

1                                 2 3             4 5       6 7     8
13

14

15

16

17

18

19

20

Case 1
2
3

2

Fig. 3. Average dimensionless entropy generation for the three cases
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has heated walls are associated with small velocity values
due to wall effects. Case 2 lies somewhere between the
two others in such a way that near the adiabatic wall iso-
therms of case 2 become similar to that of case 3 which
happens only near the heated wall which resembles case
1. It seems that for this reason case 2 leads to higher Nu
values for rectangular cross-sections when the porous
media shape parameter is large. When it comes to a square
cross-section, case 1 delivers the highest Nusselt number
and this is justified when one observes that the diagonal
lines are adiabatic lines along which no heat is transferred
and isotherms are normal to these lines, similar to a pure
conduction problem. This will lead to circular temperature
distribution which is more uniform compared to the other
cases since, to a good extent, the duct cross-section can be
considered as sum of 8 similar triangles each of which
formed by two adiabatic lines and half of a wall. In a nut-
shell, the center-wall temperature difference is smaller than
the other cases with a net effect of decreasing wall-bulk
temperature difference and increasing Nu. However, with
rectangular cross-sections, the diagonal symmetry will no
more exist for case 1.

Fig. 3a and b show Ns* versus a for s = 1 and s = 10,
respectively. A quick check of both figures shows that the
dimensionless average entropy generation rate appears to
be decreasing with an increase in the duct aspect ratio
regardless of the s value. As it was already noted for the
Nusselt number above, the choice of the length scale must
be recognized in interpreting these results. To facilitate
comparisons with past literature, the non-dimensional
entropy generation is based on the hydraulic diameter as
shown in Eqs. (9) and (10). The dimensionless entropy gen-
eration is higher for the square cross-section compared to
the rectangular counterparts and this is similar to what
reported by previous researchers [17,32]. Moreover, com-
paring the Ns* levels in the two figures, one realizes that
increasing s increases Ns*. Another feature of considerable
interest is that, regardless of s and a value, case 1 is the
most irreversible design while case 3 produces the least
entropy. In the view of the above, one concludes that the
least efficient design is case 1 with a = 1 and s = 10. For
this reason we gave this case a special attention within
the rest of our study.

Fig. 4a and b shows the line diagrams of Be and Ns for a
better understanding of the problem. Fig. 4a illustrates Be

versus y at four z locations. One observes that Be is more
or less constant excluding a thin near wall region where
for z = 0.9, Be reaches its maximum value while at smaller
z, Be increases and then decreases to its minimum value at
the wall. It is also clear that in this case, Be is less than 0.5
and hence FFI > HTI. This is an expected result since in
this case s is large enough to allow FFI to become compa-
rable to HTI.

Comparing Fig. 4b with the previous one, one observes
that Ns plots are in opposite direction to those of Be in
such a way that the maximums/minimums of Ns are asso-
ciated with the minimums/maximums of Be. With z = 0.9,
the value of Ns increases from wall to the duct center while
at other z locations Ns decreases from the wall to a near-
wall minimum, increasing and then remaining constant
up to the duct center. According to this figure, the walls
are the most active entropy generation sites where both
of the temperature and velocity gradients experience their
maximum values and consequently both HTI and FFI
increase with the net effect of increasing Ns. One notes that
Ns value at the duct center is not a minimum one. This fact
is unique for a porous passage and in the clear fluid case
one expects Ns to be at minimum since both velocity and
temperature gradients vanish due to symmetry. A quick
check of the Ns function shows that moving from the walls
to the channel center, the Darcy dissipation term (which is
absent in the clear fluid case) will grow due to the diminish-
ing boundary effects and hence FFI, which is proportional
to u2. More on the topic can be found in recent notes on
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viscous dissipation in a duct clear of solid materials [33]
and viscous dissipation in ducts filled by a porous medium
[34].

One of the reviewers has raised the question for the basis
of the neglect of the viscous dissipation effects in the ther-
mal energy equation while the FFI term in the entropy gen-
eration function is retained. We follow the same approach
as Bejan [15, p. 102] to answer this question. Order of mag-
nitude analysis in the thermal energy equation leads to the

fact that the Brinkman number Br ¼ lU2H
q00K

� �
is the key

parameter to decide on the importance of viscous dissipa-
tion, see Nield [34–36]. On the other hand, observing
Eqs. (11a), (20a), and (26a), one realizes that Br*s2 shows
the relative importance of FFI/HTI or the role played by
viscous dissipation, through FFI, in the second law. The
relative importance of these two key parameters can be
reflected in a parameter, say B*, as

B� ¼ O

lU2H
q00K

� �
1stlaw

lU2

kT wq�2 s2
� �

2ndlaw

0
B@

1
CA: ð27Þ

This can be rearranged as

B� ¼ O
kT wq�2

q00H

� �
: ð28Þ

Using Eq. (10) and replacing for DH, one has

B� ¼ O
4a

aþ 1
q�

� �
: ð29Þ

Or simply B* = O(q*) and as we assumed q* = 0.1,
B* = O(0.1). This gives us the impression that the relative
importance of viscous dissipation in the first law to that
of the second law is O(0.1). This is also in line with Bejan’s
[15] final conclusion, as expected.
5. Conclusion

The objective of the present study is to optimize heat
transfer in rectangular porous ducts via both first and sec-
ond laws of thermodynamics. Analytical solutions are
reported for the temperature distribution and the Nusselt
number that envelop three different boundary conditions.
Our closed form solutions can be used for benchmark
checks on numerical findings for flow in parallel plate
channels or ducts of rectangular cross-section filled with
or without a porous matrix. This is a relatively important
topic as reflected by the amount of numerical work
addressing similar issues; see for example [37–42]. It is
found that for s < 10 the best use of the heat transfer area
in view of the best heat transfer rate (with the same pres-
sure drop) is achieved by case 3. However, for s > 10 the
optimum design is dependent on a value in such a way that
for a duct of square cross-section, case 1 acts better than
the others while for other values of a, case 2 provides the
best heat transfer rate. Having known the velocity and tem-
perature profile, the second law analysis of the problem is
presented. It is found that case 3 is the best design for hav-
ing the minimal lost work, with the same a and s values,
while case 1 is associated with the highest entropy produc-
tion value among the others.
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